The Model of Hysteretic Behavior of SMA Based on the High Order Approximation of Differential Equation Method

نویسندگان

  • A. Likhachev
  • Yu. Koval
  • A. A. Likhachev
چکیده

Due to thermomechanical hysteresis in solids undergoing martensitic type of structure transformations the macroscopic strain and volume fraction of martensite are not a single-valued function of stress and temperature, but they become functions of the process of their change. Some of the phenomenological approaches describing ma~n thermomechanical properties of shape-memory alloys (SMA) connected with hysteresis were recently developed. 4 special type of differential equations (DE) describing evolution of the inelastic macroscopic strain and volume fraction of martensite as functions of the temperature have been proposed in our recent papers. Simplest applicatio~~s of these equations to a strain evolution during the multiple temperature cycling in a small temperature interval Itwe been also discussed. Some other problems associated with the irreversible processes caused by hysteresis will be discussed in the present paper. In particular, a new interpretation of DE method based on the transition probability concept and high order approximation including the return point effect is considered.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A High Order Approximation of the Two Dimensional Acoustic Wave Equation with Discontinuous Coefficients

This paper concerns with the modeling and construction of a fifth order method for two dimensional acoustic wave equation in heterogenous media. The method is based on a standard discretization of the problem on smooth regions and a nonstandard method for nonsmooth regions. The construction of the nonstandard method is based on the special treatment of the interface using suitable jump conditio...

متن کامل

Optimal order finite element approximation for a hyperbolic‎ ‎integro-differential equation

‎Semidiscrete finite element approximation of a hyperbolic type‎ ‎integro-differential equation is studied. The model problem is‎ ‎treated as the wave equation which is perturbed with a memory term.‎ ‎Stability estimates are obtained for a slightly more general problem.‎ ‎These, based on energy method, are used to prove optimal order‎ ‎a priori error estimates.‎

متن کامل

Modeling SMA actuated systems based on Bouc-Wen hysteresis model and feed-forward neural network

Despite the fact that shape-memory alloy (SMA) has several mechanical advantages as it continues being used as an actuator in engineering applications, using it still remains as a challenge since it shows both non-linear and hysteretic behavior. To improve the efficiency of SMA application, it is required to do research not only on modeling it, but also on control hysteresis behavior of these m...

متن کامل

Hysteresis Modeling, Identification and Fuzzy PID Control of SMA Wire Actuators Using Generalized Prandtl-Ishlinskii Model with Experimental Validation

In this paper, hysteretic behavior modeling, system identification and control of a mechanism that is actuated by shape memory alloy (SMA) wires are presented. The mechanism consists of two airfoil plates and the rotation angle between these plates can be changed by SMA wire actuators. This mechanism is used to identify the unknown parameters of a hysteresis model. Prandtl–Ishlinskii method is ...

متن کامل

Experimental Hysteresis Identification and Micro-position Control of a Shape-Memory-Alloy Rod Actuator

In order to exhaustively exploit the high-level capabilities of shape memory alloys (SMAs), they must be applied in control systems applications. However, because of their hysteretic inherent, dilatory response, and nonlinear behavior, scientists are thwarted in their attempt to design controllers for actuators of such kind.  The current study aims at developing a micro-position control system ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017